In mathematical morphology, hit-or-miss transform is an operation that detects a given configuration (or pattern) in a binary image, using the morphological erosion operator and a pair of disjoint structuring elements. The result of the hit-or-miss transform is the set of positions, where the first structuring element fits in the foreground of the input image, and the second structuring element misses it completely.
Contents |
In binary morphology, an image is viewed as a subset of an Euclidean space or the integer grid , for some dimension d. Let us denote this space or grid by E.
A structuring element is a simple, pre-defined shape, represented as a binary image, used to probe another binary image, in morphological operations such as erosion, dilation, opening, and closing.
Let and be two structuring elements satisfying . The pair (C,D) is sometimes called composite structuring element. The hit-or-miss transform of a given image A by B=(C,D) is given by:
where is the set complement of A.
That is, a point x in E belongs to the hit-or-miss transform output if C translated to x fits in A, and D translated to x misses A (fits the background of A).
Let , and consider the eight composite structuring elements, composed by:
and the three rotations of each by , , and . The corresponding composite structuring elements are denoted .
For any i between 1 and 8, and any binary image X, define
where denotes the set-theoretical difference.
The thinning of an image A is obtained by cyclically iterating until convergence: